Reflection Waveform Inversion of Ground-Penetrating Radar Data for Characterizing Thin and Ultrathin Layers of Nonaqueous Phase Liquid Contaminants in Stratified Media
نویسندگان
چکیده
Accurately quantifying thin-layer parameters by applying a targeted reflection waveform inversion methodology to ground-penetrating radar (GPR) reflection data may provide a useful tool for near-surface investigation and especially for contaminated site investigation where nonaqueous phase liquid (NAPL) contaminants are present. We implemented a targeted reflection waveform inversion algorithm to quantify thin-layer permittivity, thickness, and conductivity for NAPL thin (≤ 1∕2 dominant wavelength λ) and ultrathin (≤ 1∕8λ) layers using GPR reflection data. The inversion used a nonlinear grid search with a Monte Carlo scheme to initialize starting values to find the global minimum. By taking a targeted approach using a time window around the peak amplitude of the reflection event of interest, our algorithm reduced the complexity in the inverse problem. We tested the inversion on three different synthetic data sets and four field data sets. In all testing, the inversion solved for NAPL-layer properties within 15% of the measured values. This algorithm provides a tool for site managers to prioritize remediation efforts based on quantitative assessments of contaminant quantity and location using GPR.
منابع مشابه
A Synthetic Study to Assess the Applicability of Full-Waveform Inversion to Infer Snow Stratigraphy from Upward-Looking Ground-Penetrating Radar Data
Snow stratigraphy and liquid water content are key contributing factors to avalanche formation. Upward-looking groundpenetrating radar (upGPR) systems allow nondestructive monitoring of the snowpack, but deriving density and liquid water content profiles is not yet possible based on the direct analysis of the reflection response. We have investigated the feasibility of deducing these quantities...
متن کاملImaging the structure of cave ice by ground-penetrating radar
Several caves in high elevated alpine regions host up to several meters thick ice. The age of the ice may exceed some hundreds or thousands of years. However, structure, formation and development of the ice are not fully understood and are subject to relatively recent investigation. The application of ground-penetrating radar (GPR) enables to determine thickness, volume, basal and internal stru...
متن کاملDiscretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کاملMapping shallow soil moisture profiles at the field scale using full-waveform inversion of ground penetrating radar data
Full-waveform inversions were applied to retrieve surface, two-layered and continuous soil moisture profiles from ground penetrating radar (GPR) data acquired in an 11-ha agricultural field situated in the loess belt area in central Belgium. The radar system consisted of a vector network analyzer combined with an off-ground horn antenna operating in the frequency range 2002000 MHz. The GPR syst...
متن کاملValidation of ground penetrating radar full-waveform inversion for field scale soil moisture mapping
Ground penetrating radar (GPR) is an efficient method for soil moisture mapping at the field scale, bridging the scale gap between small-scale invasive sensors and large-scale remote sensing instruments. Nevertheless, commonly-used GPR approaches for soil moisture characterization suffer from several limitations and the determination of the uncertainties in GPR soil moisture sensing has been po...
متن کامل